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ABSTRACT

In this thesis a particular type of nonlinear
state variable feedback system is discussed. The
system contains a single nonlinearity, and it is
shown by describing function techniques and examples
that the optimum location of the nonlinear element
for maximum control is at the left end. A method for
designing gain-insensitive systems is presented, and
it is shown by simple reasoning and examples that the
system response for the gain-insensitive design is
better than that of systems designed by conventional
state variable feedback.

A method is given to overcome the effects of
saturation within the fixed plant by introducing an
intentional nonlinearity to limit the saturating
elements to their linear regions of operation. This
makes it possible to apply the above gain-insensitive
design technique so that the nonlinear plant can be
made absolutely stable for all gain. The proposed
method is then applied to improve the response of a
fuel valve servomechanism, and the system is evaluated
using an analog computer.

ix




CHAPTER I

INTRODUCTION

Throughout the course of scientific and
industrial development the problem of controlling
dynamical processes has existed. However, control
engineering, considered as one of the engineering
disciplines, is less than a century old. After
World War II complex industrial processes and especially
the modern space program have boosted the demand for
automation and control engineering science.

The problem of the control engineer is to
control a plant so thatin spite of the expected
variation in system description, the behavior of the
system does not exceed predetermined limits. Stringent
performance requirements and the sophisticated devices
of modern technology have resulted in the development
of complicated systems which cannot be synthesized and
analyzed by linear techniques. In addition to inherent
system nonlinearities sometimes nonlinearities are
introduced intentionally to realize better performance
or more economy. The investigation and development

1




2
of methods of introducing an intentional nonlinearity
to improve the system performance is the subject of

this work.

History

Many systems can be described by differential
equations which may be linear or nonlinear. When
the differential equations are linear, the system is
also said to be linear and can be designed by the
frequency domain as well as the time-domain approach.
In the frequency-domain Laplace transform techniques
are used for analysis and synthesis; improvement in
the system performance is usually effected by series
and feedback compensation designed with the aid of
Bode diagrams (Bower and Shultheiss, 1959). An al-
ternate method of design uses root locus techniques
(Truxal, 1956). The problem of determining stability
can be solved by such well-known methods as Nyquist
diagrams, root locus techniques, and the Routh-Hurwitz
criteria. For nonlinear systems the differential
equations describing the system are nonlinear, and
Laplace transform techniques are not applicable; no
direct, analytical approach exists to relate the input
and the output of the system. Some of the more widely

known methods for the analysis and synthesis of nonlinear




systems are linearization about an operating point,
graphical techniques such as the isocline method
(Thaler and Pastel, 1963), describing function methods
(Gibson, 1963), and analytical and numerical solutions.
For stability investigations one can use the second
method of Liapunov (Schultz, 1965), the describing
function method, and Popov criteria.

The modern approach to control system design
is quite different from conventional approaches. A
system must be described by n first—-order differential
equations defining n state variables. The design is
accomplished by feeding back all state variables after
multiplication by constant coefficients. Here the
system is controlled by all the states and Schultz
and Melsa (1967) have shown that a linear system can
be optimized for a quadratic Performance Index by
feeding back a linear combination of all variables.
In addition, any desired closed-loop response can be
achieved by feeding back all the state variables in
the proper combination. Herring (1967) has shown that
a certain class of nonlinear systems can be made ab-
solutely stable and gain-insensitive by feeding back

all the state variables.




Qutline of Thesis

In the following chapters it is shown how
the introduction of an intentional nonlinearity can
be combined with state variable feedback to overcome
the effects of saturation. A step~by=-step development
is presented with illustrative examples, and the
method is applied to improve the response of a practical
problem.

Chapter II deals with the representation of
linear and nonlinear state variable feedback systems.
Stability criteria for nonlinear systems are presented
along with a brief description of describing function
theory. The effect of the location of the nonlinearity
is investigated, and it is concluded that the optimum
location is at the left most end for maximum control
over the system. Finally, the chapter is concluded
with illustrative examples.

In Chapter III the effect of saturation in a
system is discussed and the idea of introducing an
intentional, saturation type of nonlinearity is described.
The concept of gain-insensitive systems 1is presented for
linear as well as nonlinear systems. Two systems, gain=-
insensitive and non-gain-insensitive, are compared and

discussed. It is shown that the gain-insensitive system




is absolutely stable and has a satisfactory step
response when the gain is varied or operates in the
nonlinear region. Finally, a design technique is
given for overcoming the effects of saturation by
introducing an intentional nonlinearity.

In Chapter IV the techniques developed in
Chapter II and III are applied to improve the response
of a fuel valve servomechanism. The design is evalu-
ated using both digital and analog computers, and the
results are presented in recorded form.

The final chapter presents the conclusions

and suggestions for further investigation.




CHAPTER II
GENERAL THEORY

In this chapter the modern representation of
linear systems is discussed and state variable feedback
methods are presented; general expressions for the
transfer functionsGeq(s), Heq(s), Y/R(s), etc., are
given in matrix form. It is shown that for systems
which contain a single nonlinearity but are otherwise
linear, the corresponding expressions for Geq(s), Heq(s),
etc., depend on the location of the nonlinearity in
the forward path.

The effects of the location of the nonlinear
element in a system are further investigated by apply-
ing describing function theory; and it is concluded
that, when the nonlinearity is located at the left end
of the system, desirable stability properties and
maximum control over the system are achieved. Finally,
the results are illustrated with a third-order system

having a single nonlinearity.

Representation of Linear Systems

There are two different ways to represent
control systems: the input-output form and the modern

6




7
state variable method. Here the latter one is of prime
interest and hence is presented in detail.

Consider Fig. 2-1, showing a general represen-
tation of a linear system. Gp represents the plant
and is described by the following set of n first-order

linear differential equations:

X = Bx + bu (Ab)
y = c'x (c)
where
A is the n x n plant matrix
b is the n x 1 control vector
¢ is the n x 1 output vector
k is the n x 1 column matrix of feedkack coefficients
X is the n x 1 state vector

u is the input to the plant
r is the input to the system
I is the n x n identity matrix
The transfer function Gp(s) relating the control

function u and the output of the system y is given by

Gp(s) = y/u(s) = cT&(s)b (2-1)
where &(s) is called the resolvent matrix and is given
by (sI - A)-l (Schultz and Melsa, 1967). The input
and output of the system are related by

Y/R(s) = cT& b (2-2)
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where &, 1is the closed-loop resolvent matrix, given
by (sI - Ak)_l or (sI - A + bkT)™t.

The system of Fig. 2-1 can be represented by
two alternate block diagram configurations, the Geq(s)
and Heq(s) representations shown in Fig. 2-2(a) and
(b), respectively. General expressions for Heq(s),

Geq(s), and Gp(s)Heq(s) are given below.

Heq(s) = (kT&@(s)b)/c 8(s)b (2-3)
Geg(s) = (cT&(s)B)/(L + (k - c)T&(s)R)  (2-4)
GpHeqg(s) = kT@(s)b (2-5)

All the above expressions can be found in terms of &,

(Schultz and Melsa, 1967).

State Variable Representation of a

Particular Type of Nonlinear System

Consider the configuration shown in Fig. 2-3 amd
having the single nonlinearity represented by the block

2 ..., G% each represents a first-

labelled N. ¢!, G
order transfer function; i.e., G% = kj(s + z3)/(s + p;).
Block diagram manipulation yields the modified diagram
shown in Fig. 2-4(a), where Gl(s) and G,(s) represent

(n - 1)tR ang ith-order linear transfer functions,

respectively, and H (s) and H (s) are of order
leq 2eq

(n - 1i-1) and (i - 1), respectively. Further
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Pig. 2-2 Geq and Heq Method of Representing

a Linear System
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Fig. 2-4 Block Diagram Reduction for the

(b)

N Gy (s)
Hyeq(s)
(a)

Gleq(s) N G,(s)
Hyeq(s)

System Shown in Fig. 2-3




13
reduction of the block diagram shows the system in
final form in Fig. 2-4(b).

Now comparing the representations for linear
systems and nonlinear systems, one can observe that
nonlinear systems cannot be represented in the simplest
G or H

eq eq
nonlinearity is located at the left most end. In the

form (as can linear systems) unless the

general case (see Fig. 2-4(b)) linear transfer functions
and characteristicsof the nonlinearity are required

to describe the nonlinear system. Heq(s) has n - 1
zeros while H2eq(s) has i - 1 zeros. As the non-
linearity is shifted towards the left side, the number
of zeros in HZeq(s) increases and finally becomes n - 1

when it is located at the left end.

Describing Function Theory

The describing function method is based on an
analysis which neglects the effects of harmonics in
the system, so that the accuracy of technique increases
with the order of the system, The system configuration
shown in Fig. 2~5 represents the reduced form of
Fig. 2-4(b) and is in the correct form for applying
the describing function method. N is the single non-

linearity of the system and is assumed to be insensitive




Fig.
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of Fig. 2-4(b) with r(t) =0
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i5
to frequency. It is desired to determine whether a
sustained oscillation of sinusoidal form exists in the
system when there is no external input.

The output of the nonlinear element when its
input is a sinusoidal wave having an amplitude E is
written in the form

e, = keq

The first term on the right-hand side is the

e + fd(e) (2-6a)

fundamental while the second term represents harmonic
distortion and is neglected. Hence
eq =~ keqe (2-6b)

k is known as the equivalent gain, or the describing

eq
function, and it is a function of input-signal
amplitude E. The describing function for the non-

linearity can be found as follows (Gibson, 1963):

Keq = g(E) + jb(E) (2-7)
where
1 .
g(E) = —=— J— £f(Esin®)sinede (2-8a)
T E o
1 2T
p(E) = =X j £ (Esin@)cosede (2-8b)
TE o

c(jw)

;;TF:T) ='G(jUJ) (2-9)

Referring to the equations (2-6b)and (2-9), one

can see that for the existence of sustained oscillations
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there must exist a simultaneous solution which satisfies

both equations; i.e.,

G(j) = - ?i.'& (2-10)

A convenient way of investigating equation (2-10) is
to draw polar plots of both sides and check for an
intersection; the point of intersection gives the
frequency and amplitude of oscillation. The oscilla-
tions may be stable or unstable depending on whether
the amplitude of oscillation decreases or increases
as the operating point on -l/keq locus moves within
the frequency-sensitive locus of G(jLD );: i.e., the
Nyquist plot.

One can apply the describing function method
to check the stability of a system having a particular
type of nonlinearity N. N is single-valued and symmetric,
lying in first and third quadrants. The describing
function for this type nonlinearity will always be real
and non-negative (Gibson, 1963). Fig. 2-6(a) shows a
saturation type nonlinearity, a representative of the
class we are considering. The equivalent gain for such

a nonlinearity is given by (Thaler and Pastel, 19262)

,
2k (.ol Eg , E / E_y2
keq = 5E(sin E§. + E§ (1 - Eg) ) /0 (2-11)

which is always real and non-negative, as expected. The

polar plot is shown in Fig. 2-6(b).




4%
M e o ca—
k
'
1 e.
- . >ei
-__—_——~/ -M
(a)
Im.
'\
- 4 -1
keg TN\ x / >
-+—— E increases Re.

(b)

Fig. 2-6 Characteristic and the Polar Plot of
Equivalent Gain for the Nonlinearity
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Consider the system whose block diagram is
shown in Fig. 2-~7(a) which is similar to Fig. 2-4(b).
It was stated previously that Gleq(s) has n - i poles,
G,(s) has i poles, and H2eq(s) has i - 1 zeros. Hence
G(JW) = Gyeq(s)Gy(s)Hgeq(s) (2-12)
has n poles and i - 1 zeros. Now to check for the

existence of oscillations, the polar plot of - Ei—

eq
for a single-valued, symmetric nonlinearity is plotted

in Fig. 2-8. For oscillations

1 (2-13)

GV L 0. €%
= C

where ch is a frequency for which G(jw) is real. This
is possible if and only if G(jw ) is inherently unstable
in the linear region or G(jw ) is conditionally stable
as shown in Fig. 2-8, labelled G''(jw ) and G'(jw),
respectively.

From Equation (2-13) it can be seen that
oscillations can exist for some value of gain k as
long as the polar plot of G(jwW ) crosses the negative
real axis. Thus to avoid oscillations G(jw ) should
not cross the negative real axis for any value of gain;
i.e., G(jw) should have the form shown by the curve
in Fig. 2-8 and labelled G'''(jw). This is possible
if G(jw) has a pole-zero excess of £ 2 and if the
zeros of G(jw ) are located at proper places. Thus it

is desired to have
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r(t)=o‘_‘Q___ Gleq(s) N Gy (s) » v

Haeq (s)

Fig. 2-7 The System of Fig. 2-4(b)

A Im.

Py
k

: oo =P Re,
-«*— E increases f_

e (j)!
Gl t (jw

G ()

Fig. 2-8 Various Types of G(jUJ)) Functions
Showing the Possibility of Oscillations
and the Polar Plot of -l/k,, for the

: q
Nonlinearity
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n-1i+1 g 2

i > n-1 (2-14)
in order to prevent oscillations. Also, it is known
that the more zeros there are in HZeq(s), the better
a system can be controlled, so that the optimum choice
for i would be n; that is, the best location for the
nonlinearity is at the left most end of the system. It
should be noted that stability of the system still de-
pends upon the zeros of H2eq(s) and hence the feedback

coefficients.

Example
Consider the plant shown in Fig. 2-9(a) which

i1s to be controlled by state variable feedback. All
systems saturate at one or another point. Here satura-
tion is accounted for by the nonlinearity labelled N,
which is presumed to be of the type shown in Fig. 2-6(a).
Different possibilities for saturation are shown in

Fig. 2-9(b), (c), and (d). It is the purpose of this
example to investigate what happens when the system

saturates at these different points.

Case I
Let N be located as in Fig. 2-9(b). State
variable feedback is to be used to achieve the closed-

loop transfer function
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(a)

»
N
-4
@~
rﬁ
[

s+3 ‘s+l L s Y

N uw! 30| *¥3} 1 1 *2} 31 |*3
s+3 s+1 s 4

Fig. 2-9 Plant Showing Saturation at
Different Polints in the System



L(s) = =5
R a3 + 5.2552 + Bs + 10

when operating in the linear region. The result is
shown in Fig. 2-10(a). When the system operates in
the nonlinear region, the input-output relation does
not hold; but some aspects of the behavior can be
investigated by the describing function method. By
block diagram reduction of Pig. 2-10(a)

oron = ——1
leq ™ 32 4 5.255 + 8

Gz(s) = 'i’

H2eq (s) =1

so that
G(s) = Gleq(s) " Haeq(s) ° Gy(s)
= 10
s(s® + 5.25s + 8)
The polar plots of G(jW ) and - Eﬁ; as given

vy Equation (2-12) are shown in Fig. 2-1l. The point
at which G(jWwW) intersects with the negative real axis
can be found very easily to be -0.238 at W = 2=/?i

That is

/

G(jw) 10

W=2/2" 272(-8 F j5.25 -2 72 + 8)

-0.238

]
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|

Fig. 2-10 Nonlinear System Designed by
State Variable Feedback Method
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Fig. 2-11 Polar Plot of G(jow) and -l/ke

q
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= ~0,238, which gives

Thus for oscillation (- 1 )max

the maximum value of k, tsg linear gain, which the
nonlinearity can have, 1In this case oscillations

will occur when k is increased beyond 1/0.238; however,
examples can be found where even without variation of
k, the system can show oscillations. One such system

is shown in Fig. 2-12(a) along with its polar plot

Case II
Let N be located as in Fig. 2-9(c). The system
still has the same configuration when operating in the

linear region. When operating in the nonlinear region

R 1 ¢ I
Gleq(s) = 473

3
Hzeq(s) = g(s + 2.66)

_ 1
Gz(s) = s(s + 1)
so that

s(s + 1) (s + 4.25)
The polar plot for G(jw)and - E;_ are shown in Fig. 2-13,
and it can be seen that there caigot be an intersection
for any value of gain k of the nonlinearity or for any

gain associated with G(jw ). Thus there is no oscillation

and the system is stable for all gain.




8+2 x3 1 X2 1 X1
20 +1.5 ls,+o.5 ] N s [T™
0.1
.01
G(s) = _20(s + 2)

8) = 38(s2 + 2.0266s + 0.783)

(a)

A Inm.

- - - _b-_——’ Re'

(b)

Fig. 2-12 Polar Plot of G(j&) and -1/k__ for
the Zystem Shown in Fig. 2-12?3)
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Fig. 2-13

Polar Plot of G(jw ) and --l/keq for Case II
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Case IIX
Let N be located as in Fig. 2-9(d). 1In the
nonlinear region
Gleq(s) =1

_ 10
Ga(s) = s(s + 1) (s + 3)

Hzeq(s) =-%(82 + 4s + 8)

so that

_ 1.25(s% + 45 + 8)
G(s) s(s + 3)(s + 1)

Again, it can be seen from the polar plot of Fig. 2-14
that the system is stable for all gain whether it be
associated with the nonlinearity or with any other gain
in the forward loop.

Comparing all three cases, one can see that as
the N is moved towards the left end the number of zeros
of H2eq(s) increases, forcing the polar plot of G(jw)
to approach the origin at a lower multiple of 900.
Finally, when saturation takes place at the left most
state variable, G(jw) approaches the origin at -90°,
and the example system becomes stable for all gain.
Still, placing nonlinearity at the left end does not
give assurance of stability if the system is conditionally

stable in the linear region, as the location of zeros of




| )
)

P Re.

Fig. 2-14 Polar Plot of G(jW) and --l/keq for Case III
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H2eq(s) influences the shape of the polar plot of G(jw)
and hence helps to determine whether or not there are
any intersections with the plot of - _1 .

To assure the absolute stabiliig for all values
of gain,a method of designing a system is presented in
the next chapter. Thus it can be concluded if N is
located at the left end, the number of zeros of H2eq(s)
to control the system is at a maximum; and the system
can be made stable for all gain by placing these zeros
at proper places.

Although the conclusions derived above were
discussed for the system having a saturation type
nonlinearity, they also hold for any frequency-insensitive,
single-valued, and symmetrical nonlinearity, as ke for

q
such nonlinearity is always real and non-negative.




CHAPTER II1I
DESIGN OF NONLINEAR GAIN-INSENSITIVE SYSTEMS

In Chapter II it was shown that the stability
of systems containing a single nonlinearity and designed
by using state variable feedback depends upon the loca-
tion of both the nonlinearity and the zeros of Hzeq(s).
In this chapter the same type of system is studied
further and a method of making the system gain-insensitive
to ensure stability is presented. Systems designed by
the proposed method are shown to have absolute stability
for any value of gain associated with the linear part
of the system or with the nonlinearity.

Next, gain-insensitive and non-gain-insensitive
systems having the same closed-loop transfer function
in the linear region are compared and significant
features of gain-insensitive systems are presented.
One can show how the introduction of an additional
intentional nonlinearity and state variable feedback
can be combined to design systems to have both absolute
stability and satisfactory transient response. The
technique utilizes the results of Herring (1967), who

31
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has suggested a method of designing systems which are
absolutely stable for all values of gain. He has shown
that a system can be made absolutely stable and insen-
sitive to gain if n - 1 of the n open-loop poles are
placed where n - 1 of the n closed-loop poles are required.

(s)

In other words, in terms of Fig. 3-1, the zeros of Heq
are placed at the same places where n - 1 of the n poles
of G(s) are located.

A step-wise procedure for designing a gain-

insensitive system is given below.

1. Describe the system in physical variables
and assume all the variables are available
for control purposes.

2. Choose the desired locations of the n
closed~loop poles of Y/R.

3. Modify the plant, or open-loop system,
with series or feedback compensation such
that n - 1 open-loop poles are located at
the positions of n - 1 of the desired poles
of Y/R.

4. Use state variable feedback to force the
n - 1 zeros of H,, to coincide with n - 1

q
of the new poles of G(s).




r(t)

KN (g)

G(s)"(s+§-)D(57 >

Heq(s)=k1D(s)
ed N(s)

Fig. 3-1 A Linear Gain-Insensitive System,
Where G(s)Heq(s) = k'/s+a

33
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5. 1If all the variables are not available,

use the calculated values of the feedback
coefficients to determine the required
minor-loop compensation (Schultz and
Melsa, 1967).

A system designed by the gain-insensitive method
has only 1 out of the n closed-loop poles as a function
of gain, whereas a non~gain-insensitive system has all
n of its closed-~loop poles as a function gain. Thus
when the gain varies, the response of the gain-insensitive
system is likely to change very little; however, the
response of the non~gain-insensitive system can change
significantly, and the system may even become unstable.
Also, the gain-insensitive system always satisfies the
frequency criteria for optimal control as the polar
plot for open-loop gain never crosses the unit circle,
while the non-gain-insensitive system does not.

Consider a nonlinear system shown in Fig. 3-2(a)
where N is of the specific type considered in Chapter II;
namely, N is frequency-insensitive, single-valued, and
symmetrical. The system is designed such that n - 1
zeros of Hzeq(s) lie at the same places where n - 1 of
the n open-loop poles are located. Such a system can
be reduced to a simple first-~order nonlinear system in

series with an (n - 1)&t orger system as shown in
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r(t) 3 N u Gn—l@ Xn ..s-}. X1 > v
H2eq(s
(a)

r(t) : , u % X'p lr-ygl X1 >

(b)

Fig. 3-2 Nonlinear Gain-Insensitive System
and Modified Block Diagram .




36
Fig. 3-2(b). It is easy to analyze such a system by
graphical methods such as the like isocline method.
The system designed by the non-gain-insensitive method

is of nth

order and cannot be reduced to any such simple
form and hence cannot be analyzed as easily by graphical
ﬁethods.

Although the gain-~insensitive method of designing
a system is superior to other techniques in many respects,
it is difficult to put the zeros of HZeq(s) exactly on
top of the poles of G(s). If cancellation does not
take place, then the system has n poles which vary with
the gain, possibly even becoming unstable if the poles
are near the j«) -axis (Herring, 1967).

The results of this and the previous chapter
are now used to design a system which saturates at a
certain point. It was mentioned previously that all
systems saturate; typical physical components having
saturating characteristics are an amplifier in the for-
ward loop and the movement of some mechanical part which
is restricted to a certain range. 1In Chapter II it was
shown that the saturating element might cause the system
to oscillate if it is not located at the proper place
within the loop. The locatiomnsof such elements are

not controllable as they are part of the physical system.
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A way to prevent saturation of such an element
is to control the input signal to that element; this can
be done by introducing an intentional nonlinearity
having a limiter type characteristic with the proper
limiting values. With the introduction of such an
element the system following the nonlinearity always
operates in its linear region since the nonlinearity
input is always restricted to the range of linear opera-
tion for the nonlinearity.

In Chapter II it was shown that if the location
of the nonlinear element is at the left most end and
state variable feedback is used, there are n -~ 1 zeros
of Hzeq(s) to control the plant. Thus it can be seen
that if a limiter is introduced at the left end and if
state variable feedback is used, then saturation in
other parts of the system can be prevented and the
system can be made stable for all gain, even insensitive
to gain.

The technique is illustrated in the following
example where two methods of designing the same system

are presented for comparison.

Exanmple 1
Consider the plant shown in Fig. 3-3(a) and

having an intentionally introduced nonlinear element




Fig.

—

3-3

X2

a f=

(a)

(b)

Plant and Characteristic of N for Example 1
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of the saturation type whose characteristic is shown

in Fig. 3-3(b). When operating in the linear region

s(s = 1)
and the required closed=loop transfer function is

chosen to be

Y 10
E‘S) (s + 2)(s + 5)

Gain-Ingensitive Design
Now feeding back X, to modify the plant so that

n - 1 (1) of the open-loop poles lie at the same place
as (n - 1) one of the closed-loop poles, gives the

modified open-loop plant, as

|

= ;0 4
G(s) = o—3=; 1ok, s

The value of k,' that places one of the poles of G(s)

at the closed-loop pole location s = -2 is k2 = .3.

Next, both x. and x, are fed back from the modified G(s)

1 2
to realize the desired closed-loop transfer function
when operating in the linear region. By block diagram
manipulation

10
R~ g2 + 28 + 10(kps + kl)

Equating the denominators of the required and the designed

closed-loop transfer functions, kl and k2 are found to

be kl = 1.0 and k2 = 0.5.
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Non-Gain-Insensitive Design
Here both Xy and X, are fed back directly from
Gp(s). Block diagram manipulation yields

Y 10

el

R~ sZ - s + 10(k,s + k;)

Comparing the denominator of the required and designed
expression for Y/R, kl and k2 are found to be kl = 1.0,
ko, = 0.800.

Both systems are shown with their root locus in
the linear region of operation in Fig. 3-4(a) and 3-4(b).
Both systems were simulated on an analog computex, and
the step responses are presented in Fig. 3-5(a) and
3-5(b), respectively. It can be seen that for a step
input, in the linear region of operation, both systems
respond in the same way. However, when the input is
increased so that the systems operate in nonlinear
region of N, the non-gain-insensitive system gives
an overshoot while the other system does not; in fact,
the response of the gain-insensitive system does not
differ very much from its response in the linear region.

The behavior of the non~gain-insensitive system
in the nonlinear region can be explained as follows.
Consider the characteristic of a general saturation
type nonlinearity shown in Fig. 3-6, ey is the input

to the nonlinearity, € represents the output, and k is
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Fig. 3-4 Gain-Insensitive and Non-Gain-Insensitive
Systems with Their Root Locus Sketch in
the Linear Region
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Fig. 3-6 Explains the Decrease in k' When
N Operates in the Nonlinear Region
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the gain in the linear region of operation. When the

input has a magnitude less than e the output is k

sl

times the input and the equivalent gain is

K* = output _ X
T input

When |ei| > e,, the output is te.k and k' becomes

sl
+egk

k'==2_ <k
input

Thus it can be seen that as the input amplitude increases
keq. decreases. In Example 1 when the input amplitude

is increased, so that the input to N is greater than

eg = 0.5, k* decreases and hence the total gain in

the loop decreases, causing the n poles of non-gain-
insensitive system to assume a different configuration.
The new closed-loop configuration can be a pair of complex

conjugate poles (see root locus sketch Fig. 3-5(b)), which

causes overshoot in the output of the system.

Example 2
Consider the plant shown in Fig. 3-=7(a). The
nonlinearity N is of the saturation type as shown in

Fig. 3-7(b). In the linear region

1
G F .
P s3

and the desired closed-loop transfer function is chosen

to be

Y _10
R(S) = (s + 10)(sZ2 + s + 1)
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(a)

(b)

Fig. 3-7 Plant and Characteristic of N for Example 2
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Two designs, gain-insensitive and non-gain-insensitive,
are shown with their root locus plots for linear opera-
tion in Fig. 3-8(a) and (b), respectively. In the linear
region both systems respond in the same way, but when
operating in the nonlinear region, as the step-input
amplitude is increased, the non-gain-insensitive system
gives more and more oversnoot and finally becomes
unstable. This does not happen with the gain-insensitive
system. The above phenomenon can again be explained by
the same reasoning given in the previous example and

also can be seen from the root locus diagram.

Example 3

The last example has the plant shown in
Fig. 3-9(a) and the nonlinearity shown in Fig. 3-9(b).

In the linear region

- 20
Gp(s) = EZ 35,25 + 1)s
and the desired closed-loop transfer function is

20
(8 + 10) (s< + 0.4s + 2)

Y -
ﬁ(S) =

Gain-insensitive and non-gain-~insensitive designs are

shown in Pig. 3-10(a) and 3-10(b) along with their root
locus diagrams for linear operation. Both systems were
simulated on the analog computer and the response to a

step input is presented in Fig. 3-1l(a) and 3-11(b).
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Fig. 3-8 Gain-Insensitive and Non-Gain-Insensitive

Systems Along with Their Root Locus Sketch
in the Linear Region
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Fig. 3-9 Plant and Characteristic of N for Example 3
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When operating in the linear region, the response to a
step input is the same for both systems. When the
input is increased so that the systems operate in the
region in which the nonlinearity is saturated, the
results show that the non-gain-insensitive system
gives more overshoot than when operating in the linear
region and that the transient takes a relatively long
time to die down. Also, when the magnitude of the in-

put step to the system is increased more and more, a

point is reached where there are sustained oscillations;
these oscillations die down when the input magnitude
is further increased. If the input amplitude is further
increased, it again gives sustained oscillations as
can be seen from Fig. 3-12. As in the previous examples,
the response of the gain-insensitive system does not
differ much from the linear response when operating in
the nonlinear region.

From the above three examples, it can be seen
that for the same closed-loop transfer function in the
linear region, the system designed by the gain-insensitive

method is absolutely stable and almost insensitive to

gain; its response is good even when operating in the
saturated region. For the system designed by the non-

gain-insensitive method there is more overshoot and
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sustained oscillations if the plant is unstable or
conditionally stable. Thus from the above observations
it can be seen that the system stabilized by introducing
an intentional nonlinearity and designed by the gain-
insensitive method gives a more satisfactory performance
although it increases the complexity of the system.

In the next chapter the gain-insensitive design
technique is applied to a practical, high-order design

problem.,




CHAPTER 1V
DESIGN OF A FUEL VALVE SERVOMECHANISM

In this chapter the results of the previous
two chapters (that is, an intentional nonlinearity
can be introduced at the left end of the plant to
prevent saturation of signals further down in the
system, and using state variable feedback a system
can be made absolutely stable and insensitive to gain)
are applied to improve the performance of a fuel valve
servomechanism for a General Electric J-85 jet engine.
The engine is being used at Lewis Research Center, a
NASA facility, for studying engine and inlet controls
for the supersonic transport.

In order to apply the design technique it is
necessary to start with a linear model of the physical
system. Fig. 4«1 shows the block diagram of the 7th
order linearized plant where the state variables are

c Actuator position

[o 10

Actuator velocity

¢  Actuator acceleration

bl4 Spool valve displacement
Flapper valve displacement

54
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&f Flapper valve velocity
I Torque motor current
Let ¢ = x;, %) = Xy, X3 = X3, Xg = X4, Xg = Xg,
*5 = Xg, and I = x5. Then the plant can be described
by 7 first-order differential equations as shown in the

Appendix and can be represented by equations (Ak) and (c)

X = AX + bu (Ab)
y=c'x (c)
where _
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 -3.28x108 -6.68x10% 8.48x10tl o0 0 0
0 0 0 0 5.76x10° 0 0
0 0 0 0 0 1 0
0 0 0 -3.05x10° -2.10x1d -3.66x10° 2.26x10°
0 0 0 0 0 0 -2.5x10?_
= [o 0 0 0 0 0 2.5x10° 7]
=1 0 0 0 0 0 o ]

In the actual physical system the signals Xeo Xgo and c
are limited to magnitudes less than 0.0012 inches,
0.015 inches, and 0.125 inches, respectively.

There have been at least two previous compensation

schemes to improve the performance of this control system,
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both of which utilized the above linear model. One
scheme was to use conventional lead-lag compensation;
the resulting system had a bandwidth of 220 hertz and
a step response with an overshoot of 10% for small size
step inputs. For input amplitudes of over 10% full
scale the effects of the saturation limits caused an
unsatisfactory deterioration of the response.

The second scheme utilized state variable
feedback and sought to achieve a much faster response
than that resulting from the lead-lag compensation.

The resulting design required feedback from 5 of the

7 state variables and had a bandwidth of 700 hertz and

an overshoot of less than 10% in the step response.
Unfortunately, when the saturation limits on the system
variables were introduced, for disturbances of any
reasonakle magnitude the system per cent overshoot in

the transient response was excessive; and the system
bandwidth decreased to approximately 100 hertz (Slivinsky,
Dellner, Aparasi, 1967).

In this chapter the linearized system is first
designed by the gain-insensitive method for a bandwidth
of about 350 hertz and an overshoot less than 10%. Then
an intentional nonlinearity of the saturation type is

introduced whose saturating limits are found experimentally
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on an analog computer so that the signals at Keo Xgo
and the output do not saturate when the full-scale input

is applied.

Design of Gain-Insensitive System

The gain-insensitive design is carried out in
three steps: selecting the desired closed-loop transfer
function, modifying the plant so that 6 of the 7 closed-
loop poles are achieved, and finding the feedback
coefficients so that the closed-loop transfer function
is realized.

As an aid in carrying out the first step cone can
refer to the pole-zero configuration for the original
plant as shown in Fig. 4-2., Studying this plot and the
normalized step-and frequency-response curves satisfy-
ing the ITAE performance index (integral of time
multiplied absolute error, Graham and Lathrop, 1955)

a second-order model is chosen with UD11:= 2250

i

radians/second and g 0.7 to realize a bandwidth
of about 350 hertz and an overshoot of less than 10%.
Thus the second-order model has the transfer function

Y _ 5,0625 x 10°
(<) =% 3 6 (4-1)
R model S° + 3.15 x 103s + 5.0625 x 10

The model is extended to the seventh order by

choosing 2 of the seven poles to be located as in
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Fig. 4-2 Open-Loop and Closed~-Loop Pole
Location for the Linear System
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4
Equation 4-1, 1 at the location s = -1.7 x 10, and
the remaining 4 at the same positions as the complex
conjugate poles of the fixed plant. The resulting
configuration is shown in Fig. 4-2, and the closed-~loop
transfer function is given by

) _ 5.0995x10%° .
R'extended (s+3.34149x10°+j1.77998x107)

(s+1.3556x10°+j4.07384x10°)

(s+1.575x10°+j1.575x10°) (s+1.7x104)  (4-2)

Note that Y/R approaches 1 as s approaches 0 so that
that system has 0 steady-state error for step inputs.
The extended model was checked for time response
and frequency response, and it was found that the re-
suits were almost the same as for the simple second-
order system; i.e., the bandwidth was 350 hertz, and
the overshoot was 8.4% with a rise time of about .0011
seconds.
To carry out the second step it is necessary
to put n = 1 (6) of the open-loop poles where 6 of
the closed-loop poles are located. The plant is

modified such that the new open-loop transfer function is

_ _2.997x10%4
T 5(s+3.34149%103+j1.77998x10%4)

G(s) (4-3)

(s+1.3556x10°+j4.07384x103) (s+1.575%10°£j1.575%103)
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This is done by feeding back the state variables Xq
through x- as shown in Fig. 4~3, With the help of
the IBM 7072 digital computer, using the program of
Melsa (1967) and the A, b, and ¢ matrices given above
with the slight modification given in the Appendix,
the coefficients were found to be

ky' = -4.6774 x 107>

k3' = -1.7077 x 1072

kg4' = 1.57057 x 1ol

kg' = 1.272 x 10l

kg' = 4.6671 x 1073

ko' = =1.13557
and the gain k is 1.0839.

Now the modified plant is used in feeding back
the variables x; through x; to realize the closed-loop
transfer function given in Equation 4-2, The system
is as shown in Fig. 4-4. Again, Melsa's program was
used to perform the calculations, this time with the
A, b, and ¢ matrices corresponding to the modified
plant. These matrices are given below, and the de-
tails of the derivation of the differential equations

can be found in the Appendix.

=0 0 0 0 0 0 2.70982x10% |
&= 0 0 0 0 0 0 ]
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The feedback

of state var

and the gain
The

(the details

0 1.36x1072 4.62x10~7 -4.08x10° -3.44x103 -1.26 12.19x10
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0 0 0 0 0

1 0 0 0 0
-3.28x10% -6.68x103 -8.48x10%1 0 0

0 0 5.76x103 0 0

0 0 0 1 0

0 -3.05x10° -2.10x107 ~3.66x10° 2.26x10°

3

ad

coefficients for this second application
iable feedback are given by
1.000

2.03317 x 10~°

3.06212 x 10™°
1.5242
1.77896

4

3.57654 x 10~
3.690275 x 1071
is 1.7 x 102,

system was simulated on an analog computer

of the simulation are given in the

Appendix), and the time response for a step of 5 volts

is given in Fig. 4-5(a) showing an overshoot of about

8.2% and a rise time of 0.00115 seconds. The feedback

coefficients
dividually,

two feedback

from different states were removed in-

and it was found that the removal of the

signals from both ¢ and ¢ does not effect
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the system response very much as can be seen from
Fig. 4-5(b). To check the property of gain-insensitivity
the gain was varied from 100 to 250, and it was found
that the effect is negligible as can be seen from
Fig. 4-5(c). Thus we can conclude that the system is
gain-insensitive, with a bandwidth of 350 hertz, an
overshoot of 8.2% with a rise time of .0011l5 seconds
and is unaffected by removing the feedback from ¢ and
c.

In a more realistic model of the system saturation
at Xgr Xgo and c must be taken into account. Here the
technique of Chapters II and III is used, and an in-~
tentional nonlinearity of the saturation type is
introduced, whose saturating limits were found experi-
mentally to be +0.595 volts so that the signals at Xe
and Xg never exceed their saturation limits.

To check whether the nonlinear system is correct
or not, the system response was found for the small in-
put of 0.5 volts, and it was found to be the same as
that of the linear system as shown in Fig. 4-6(a). The
step response for a step size of 5 volts is shown in
Fig. 4-6(b). Comparing this response with that of the
linear system, one can see that the former has a large

rise time because the system operates in part in the
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saturated region. The overshoot is about the same as
for the linear system.

The system response was checked with the feedback
signals removed from ¢ and ¢, and it was found that the
response is not much affected. The signals Xe and xg
do not exceed their saturating limits; and the per cent
overshoot is in the same range as previously, as can
be seen from the time response shown in Fig. 4-6(c).
Also, the effects of varying the gain, which was varied
from 100 to 255, were checked; and the response was
found to be almost unaltered, as can be seen from
Fig. 4-6(d). The system sensitivity was evaluated by
varying the feedback coefficients by +25%, and it was
found that this variation of the feedback coefficients
does not cause any serious problems. Thus it can be
concluded that the nonlinear system is insensitive to
gain, variations in feedback coefficients, and the
removal of the feedback signals fran¢ and ¢. When
the input is such that the system operates in the non-
linear range, the step response is slower than that of
the linear system but the per cent overshoot is almost

the same.




CHAPTER V
SUMMARY AND CONCLUSIONS

The representations of linear and a certain
class of nonlinear state variable feedback systems
have been presented. The nonlinear system was assumed
to have a single nonlinear element of the non-memory
type which was symmetric and had its characteristic
lying in the first and third quadrant. The Ge and

q
H representation was used to show that the optimum

eq
location for the nonlinear element is at the left end,
although stability depends on both location of the
nonlinearity and the locations of the zercs of Hzeq(s).
To ensure absolute stability for all gain, the
gain-insensitive method of design was proposed; and a
step~-by-step procedure was presented. Systems designed
by the gain-insensitive method are absolutely stable
and insensitive to gain. In the case of nonlinear
systems, an nth order system can be reduced to a
first-ocrder nonlinear system in series with the
(n-1)St-order nonlinear system which is easy to analyze.
Also, even when working in the nonlinear region the re-

sponse of the nonlinear system is not degraded as much
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as that of the same system designed by non-gain-
insensitive methods. Thus the linear and nonlinear
gain-insensitive systems are better in certain respects
than non-gain-insensitive systems.

The property of inherent saturation in a plant
was discussed along with effects which may cause in-
stability. Saturation in the fixed plant can be pre-
vented by introducing an intentional, saturation type
nonlinear element with the proper limits. By combining
this idea with the gain-insensitive method using state
variable feedback, a system not only can be made stable
but also absolutely stable for all gain.

The technique was used in improving the response
of a fuel valve servomechanism which saturates at three
different points. The resulting system has a large
bandwidth and a low overshoot in response to a step
input when operating in the linear region; in the non-
linear region, the response was better than that achieved
in two previous design attempts.

Although the method worked well in the design
example, there are several things yet to be investi-
gated in connection with the design of the fuel valve
servomechanism. The sensitivity of the system can be
investigated further, perhaps even incorporating

sensitivity requirements as one of the design criteria.
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Also, whether the system response can be improved by
using the conventional series compensation in combina-
tion with the gain-insensitive design technigque can be
investigated. A systematic method is still not aQailable
for choosing the closed-loop transfer function so that
the unavailable feedback coefficients can be made
negligibly small. The technique of introducing an
intentional nonlinearity has been discussed for a
particular type of system. It still has to be deter-
mined whether the technique is applicable to systems
having other types of nonlinearities, such as a relay

with dead space.




APPENDIX

Here the derivations of three sets of the (Ab)
and (c¢) system equations are presented for the fuel
valve servomechanism. Also, details of the analcg
computer simulations are given for this same system.

The differential equations describing the fuel
valve servomechanism are derived with the aid cf the
block diagram presented in Fig. a-l. Let ¢ = xy,

X, = Xp, Xy = X3, Xg T Xy, Xp = Xg, %g = Xg, and

I = x9. Assuming all initial conditions to be zero,
the first two equations describing the plant are

X, = X, (A-1)

1

From the figure the transfer function relating x; to Xa

can be used to find i3

Xy _ 8.483 x 10'!
x4 s3 + 6.683 x 103s¢ + 3,28 x 10%s

Cross-multiplying and transferring to the time domain,
one gets

%y = -3.28 x 10%%, - 6.683 x 10%x; + 8.483 x 10%1x, (A-3)

Also from the relationship

X4 5,769 x 10°

X5 S
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one gets
X4 = 5.769 x 107xg (A-4)
and by definition
).(5 = X6 (A'S)
The transfer function relating X4 and x4 can ke

used to find §6

X4 _ 2,262 x 5,763 x% 10°
X7 (s + 3.669 x 10°s + 2.103 x 10’s + 1.761 x 10-Y)

Cross-multiplying and transferring to the time domain,

one gets

X4

= -3.669 x 10°%, - 2.103 x 107%, - 1.761 x 1019,

+2.262 x 5.769 x 109x7
Substituting for i4 and xg

kg = -3.055 x 10%, - 2.103 x 10'x5 - 3.669 x 103k,

+2.262 x 106x7 (A-6)

From the block diagram

X

THs) = o3 2?;5x 105
which gives

X, = =2.5 x 10%%, + 2.5u (A=7)
Also

Yy = Xp (A~8)

Thus using Equations (A-l1) to (A-8), the plant

equations (Ab) and (c) can be written in matrix form.




>

)
For modifying the part of the plant from ¢ to
u; as shown in Fig. 4-3, the required equations (Ab)
and (c¢) can be found as follows. The equations for
iz, %3, x4, %5, and %, are the same as those of

Equations (A-2, 3, 4, 5, and 6). From Pig. 4-3

Xy _ 2.5 x 10°

ul s + 2500

Cross-multiplying and transforming to the time domain,

one gets
%, = =2.5 x 10°x, + 2.5 x 10%y; (A-9)
and
Yy = X»> (A~10) ?
Thus the modified matrices are
" o 1 0 0 0 o ]
-3.2x10% -6.5x10° 8.4x10't 0 0 0
0 0 0 5.7x%10° 0 0
0 ) 0 0 1 0
0 0 ~3.0x10°% -2.1x10 -3.6x10° 2.2x10°
0 0 0 0 0 2.5
0 0 0 0 0 2.5%10%]

[
[ 1 0 0 0 0 o ]

To realize the closed-loop transfer function

by feeding back all the variables, the differential
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equations describing the modified plant are used.
The differential equations for il: Xor X34 X4 iS'
and ke are the same as Equations (A-1, 2, 3, 4, 3,
and 6), respectively. Again, from the block diagram
shown in Fig. 4-3
%, = -2.5 x 10%%, + 2.5 x 10°u,

Substituting for uj; in the alove equation gives
%, = 1.3675 x 107 %x, + 4.6277 x 107 'xg

7

-4.0828 x 103x, - 3.4700 x 107xg

X4

-2.1923 x 103x, + 2.70982 x 10%u (a-11)
Equations (A-1, 2, 3, 4, 5, 6, 11, and 8) are sufficient
to describe the modified plant in matrix form to be

used on the digital computer.

Details of the Analog Computer Simulations

To evaluate the designed gain-insensitive
linear and nonlinear systems an analog computer of
+100v. was used. The systems were simulated using
the differential equation approach. The different
variables were scaled using the following scale factors
x1(2 x 10%)  x,(2) x3(2.35 x 10%)  xg(10%)
xg (1) x2(2 x 103)  u(2 x 10°) r(4 x 10?%)
The limits of the saturating states X0 X4 and Xg have
the magnitudes 5 volts, 35 volts, and 12 volts,
respectively. The scaled differential equations are

as follows:




~l
~J

"
|

2

1

4

Xy = 10 X3

k3 = -3.28x10%x,-6.683x10%x3+3.60978x10%,

. 3

Xg4 = 1,3557 x 10 Xg

.4

Xg = 10 Xg

. 3 3 3 3

%g = =1.3x10%x4-2.1030%10%%5~3.669x10 % +1. 131x107x,,

% = 2.7350x101x2+9.2554x3-3.4747x103x4—6.894x102x5
-2.5294x10°xg-2.1923x10°x,+4.60669x107u

u = (5r(t) - 2 x 10'35?5)

The feedback coefficients are kl = 10, k2 = 4,066 xlo-z,

ky = 6.124 x 1072, kx, = 1.297188, ks = 3.55792 x 1073,

kg = 7-15308 x 1071, and k, = 3.690275 x 1071,

In order to facilitate the recording of step
responses, the system was time-scaled by the factor 104
which gives the new differential equations

x3 = 0.02x;

X2 T %3

X3 = =3.28x, - 0.6683x3 + 3.60978x%,

X4 = 0.13557xS

Xg = X

Xg = =0.13x,-0.2103x5~0.3669x¢+0.1131x,

X., = 0.002735x.+0.00093x.,-0.34747x

7 2 3 4
-O.25294x6-0.21923x7+4.60669u

Using the above equations and the feedback

coefficients the system circuit diagram is formed as
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shown in the Fig. A-2 for the linear system. For the
nonlinear system an intentional nonlinearity is
introduced, whose characteristic is shown in Fig. A-3

along with the diode bridge to realize it.
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Fig. A-3 Details of the Bridge Circuit
Realizing the Limiter and iis
Input-Qutput Char-tteristic
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